Parallel Programming

& Cluster Computing
!'_ Instruction Level Parallelism
Henry Neeman, University of Oklahoma

Paul Gray, University of Northern lowa

SCO08 Education Program’s Workshop on Parallel & Cluster Computing
Oklahoma Supercomputing Symposium, Monday October 6 2008

Q' l'l INFORMATION
TECHNOLOGY

THE UNIVERSITY OF OKLAHOMA

FEOMP T
A\‘
[=4m

Outline

= What is Instruction-Level Parallelism?
= Scalar Operation

= Loops

= Pipelining

= Loop Performance

= Superpipelining

= \Vectors

= A Real Example

e o/’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
|

L

ER:Y) - : :
S(i,} % ® lp rhesey - Oklahoma Supercomputing Symposium, October 6 2008

Parallelism

Parallelism means
doing multiple things at
the same time: You can
get more work done in
the same time.

Less fish ...

More fish!

Y- SCO08 Parallel & Cluster Computing: Instruction Level Parallelism]
| lit#’éf;%ﬁ.’éﬂ%v Oklahoma Supercomputing Symposium, October 6 2008 5;‘;?

IMIVERSITY OF OKLAHOMA

3

What Is ILP?

Instruction-Level Parallelism (ILP) is a set of techniques for
executing multiple instructions at the same time within
the same CPU core.

(Note that ILP has nothing to do with multicore.)

The problem: The CPU has lots of circuitry, and at any given
time, most of it is idle, which is wasteful.

The solution: Have different parts of the CPU work on
different operations at the same time — if the CPU has the
ability to work on 10 operations at a time, then the program
can, in principle, run as much as 10 times as fast (although in
practice, not quite so much).

SC08 Parallel & Cluster Computing: Instruction Level Parallelism

G » 4
&&ER} % t nromasmion Oklahoma Supercomputing Symposium, October 6 2008 ”,7? 4

DON"T
PANIC!

£ Ql"'i SCO08 Parallel & Cluster Computing: Instruction Level Parallelism)
0 Q ' l_lt_{;_f;gﬁ;g,ﬂ;gg Oklahoma Supercomputing Symposium, October 6 2008 5;",-3?

j Why You Shouldn’t Panic

In general, the compiler and the CPU will do most of the heavy
lifting for instruction-level parallelism.

BUT:

You need to be aware of ILP, because
how your code Is structured affects
how much ILP the compiler and the
CPU can give you.

SCO08 Parallel & Cluster Computing: Instruction Level Parallelism]
l_ L isoneney - Oklahoma Supercomputing Symposium, October 6 2008 S;E? 6

Kinds of ILP

Superscalar: Perform multiple operations at the same time
(e.g., simultaneously perform an add, a multiply and a load).

Pipeline: Start performing an operation on one piece of data
while finishing the same operation on another piece of data —
perform different stages of the same operation on different
sets of operands at the same time (like an assembly line).

Superpipeline: A combination of superscalar and pipelining
— perform multiple pipelined operations at the same time.

Vector: Load multiple pieces of data into special registers and
perform the same operation on all of them at the same time.

% e o/’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
t temaieey Oklahoma Supercomputing Symposium, October 6 2008 ’}? !

What’s an Instruction?

= Memory: e.g., load a value from a specific address in main
memory into a specific register, or store a value from a
specific register into a specific address in main memory.

= Arithmetic: e.g., add two specific registers together and put
their sumin a speC|f|c register — or subtract, multiply,
divide, square root, etc.

= Logical: e.g., determine whether two registers both contain
nonzero values (“AND”).

= Branch: Jump from one sequence of instructions to another
(e.g., function call).

m ...andsoon....

l/(O&ER} SCO08 Parallel & Cluster Computing: Instruction Level Parallelism
R t;:;amgs Oklahoma Supercomputing Symposium, October 6 2008 ,‘:«? 8

What’s a Cycle?

You’ve heard people talk about having a 2 GHz processor or a 3
GHz processor or whatever. (For example, Henry’s laptop
has a 1.83 GHz Pentium4 Centrino Duo.)

Inside every CPU is a little clock that ticks with a fixed
frequency. We call each tick of the CPU clock a clock cycle

or a cycle.
So a 2 GHz processor has 2 billion clock cycles per second.

Typically, a primitive operation (e.g., add, multiply, divide)
takes a fixed number of cycles to execute (assuming no

pipelining).

l/(O&ER\}\ % e o/’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
lt neomumey - Oklahoma Supercomputing Symposium, October 6 2008 ”,.—;? 9

What’s the Relevance of Cycles?

Typically, a primitive operation (e.g., add, multiply, divide)
takes a fixed number of cycles to execute (assuming no
pipelining).

= |IBM POWER4 [1]

= Multiply or add: 6 cycles (64 bit floating point)

= Load: 4 cycles from L1 cache
14 cycles from L2 cache

= Intel Pentium4 EM64T (Core) (2]

= Multiply: 7 cycles (64 bit floating point)
= Add, subtract: 5 cycles (64 bit floating point)
= Divide: 38 cycles (64 bit floating point)
= Square root: 39 cycles (64 bit floating point)
= Tangent: 240-300 cycles (64 bit floating point)

ncansoy Oklahoma Supercomputing Symposium, October 6 2008

l/OSEEE}\' % e o4’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism

g Scalar Operation

DON"T
PANIC!

£ Ql"'i SCO08 Parallel & Cluster Computing: Instruction Level Parallelism)
N | 'l_lt_{;;gg;g,ggg Oklahoma Supercomputing Symposium, October 6 2008 72 12

Scalar Operation
Z =a*b+c * d;

How would this statement be executed?
Load a into register RO
Load b into R1
Multiply R2 = RO * R1
Load c Into R3
Load d into R4
Multiply R5 = R3 * R4
Add R6 = R2 + R5
Store R6 Into z

N OR WM R

SCO08 Parallel & Cluster Computing: Instruction Level Parallelism]
l L isoneney - Oklahoma Supercomputing Symposium, October 6 2008 S;E? 13

Does Order Matter?
Zz =a>*b+c* d;

1. Load a into RO 1. Load d into RO
2. Load b Into R1 2. Load c iInto R1
3. Multl I%/%O « R1 3. I\/Iultlplﬁo « 1
4, Load c Into R3 4., Load b Into R3
5. Load d into R4 5. Load a into R4
6. Multiply 6. Multiply
R5 = R3 * R4 R5 = R3 * R4
7. Add R6 = R2 + R5 | 7. Add R6 = R2 + R5
8. Store R6 Into z 8. Store R6 into z

In the cases where order doesn’t matter, we say that
the operations are independent of one another.

4 _ % e a4’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism __
¢ U l]l__'l_}g;g;giggg Oklahoma Supercomputing Symposium, October 6 2008 S;E?

Superscalar Operation

B~ w

D.

Z =a*b+c* d;
Load a into RO AND
load b into R1
Multiply R2 = RO * R1 AND
load ¢ into R3 AND
load d into R4
Multiply R5 = R3 * R4
Add R6 = R2 + R5
Store R6 Into z
If order doesn’t matter,
then things can happen simultaneously.

So, we go from 8 operations down to 5.
(Note: there are lots of simplifying assumptions here.)

SCO08 Parallel & Cluster Computing: Instruction Level Parallelism]
. 'I L isoneney - Oklahoma Supercomputing Symposium, October 6 2008 S;E? 15

_oops Are Good

Most compilers are very good at optimizing loops, and not
very good at optimizing other constructs.
Why?

DO 1ndex = 1, length
dst(index) = srcl(index) + src2(index)
END DO

for (index = 0O; iIndex < length; index++) {
dst[index] = srcl[index] + src2[index];

SCO08 Parallel & Cluster Computing: Instruction Level Parallelism]
. 'I L isoneney - Oklahoma Supercomputing Symposium, October 6 2008 S;E? 17

Why Loops Are Good

= Loops are very common in many programs.

= Also, It’s easier to optimize loops than more arbitrary
sequences of instructions: when a program does the same
thing over and over, it’s easier to predict what’s likely

to happen next.
So, hardware vendors have designed their products to be able
to execute loops quickly.

TECHNO LO GY

l/(O&ER} ad’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
\\ X t'“m" smov Oklahoma Supercomputing Symposium, October 6 2008 ”,,—;?

DON"T
PANIC!

£ Ql"'i SCO08 Parallel & Cluster Computing: Instruction Level Parallelism)
N | 'l_lt_{;;gg;g,ggg Oklahoma Supercomputing Symposium, October 6 2008 72 19

j Superscalar Loops

, I
a(i) * b(@i) + c(i) * d(i)

Each of the iterations i1s completely independent of all
of the other Iiterations; e.g.,

z(1) = a()*b() + c(1)*d(1)
has nothing to do with
z(2) = a(2)*b(2) + c(2)*d(2)

Operations that are independent of each other can be
performed In parallel.

SCO08 Parallel & Cluster Computing: Instruction Level Parallelism)
_ 'I & iones2r - Oklahoma Supercomputing Symposium, October 6 2008 5;3? 20

Superscalar Loops

for (1

}

n; 1++) {
bfi1] + c[1] * d[1];

11l
v O

z[i]

Load af 1] into RO AND load b[1] into R1
Multiply R2 = RO * R1 AND load c[i1] into
R3 AND load d[i] Into R4

Multiply R5 = R3 * R4 AND

load a[i+1] into RO AND load b[i+1] into R1
Add R6 = R2 + R5 AND load c[1+1] into R3
AND load d[1+1] into R4

Store R6 into z[1] AND multiply R2 = RO * R1
etc etc etc

Ince this loop Is “in flight,” each iteration adds only

2 operations to the total, not 8.

— % % e/’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism

lfil__'__}f;;%;g{ggg Oklahoma Supercomputing Symposium, October 6 2008 5;‘;3?

Example: IBM POWER4

8-way Superscalar: can execute up to 8 operations at the same
timell]

= 2 integer arithmetic or logical operations, and

= 2 floating point arithmetic operations, and

= 2 memory access (load or store) operations, and
= 1 branch operation, and
= 1 conditional operation

l/(O&E;l} ad’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
Bt t;:‘camggs Oklahoma Supercomputing Symposium, October 6 2008 ”,7? 22

g Pipelining

Pipelining

Pipelining is like an assembly line or a bucket brigade.
= An operation consists of multiple stages.
= After a particular set of operands

z(1) = a(r) * b(r) + c(r) * d(n)
completes a particular stage, they move into the next stage.
= Then, another set of operands
z(i1+l) = a(i+l) * b(1+l) + c(i+l) * d(i+l)

can move Into the stage that was just abandoned by the previous
set.

l/OSEEE}\' @ e o4’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
(88 _// '|g ' riorsney - Oklahoma Supercomputing Symposium, October 6 2008 5;}? 24

L
755

DON"T
PANIC!

£ Ql"'i SCO08 Parallel & Cluster Computing: Instruction Level Parallelism)
N | 'l_lt_{;;gg;g,ggg Oklahoma Supercomputing Symposium, October 6 2008 2 25

Pipelining Example

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

1 = 1 poNn'TPANIC!

DON'TPANIC! § = 4

Computation time
If each stage takes, say, one CPU cycle, then once the
loop gets going, each iteration of the loop increases the
total time by only one c¥cle So a loop of length 1000
takes only 1004 cycles. I3

5 2 % SCO08 Parallel & Cluster Computing: Instruction Level Parallelism _A
oy 3 LreRasy Oklahoma Supercomputing Symposium, October 6 2008 ‘C;, 26

Pipelines: Example

= IBM POWERA4: pipeline length = 15 stages [

1/&)&_}5;{} ad’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
_/ t;:;am{ggs Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

Some Simple Loops

DO index = 1, length
dst(index) = srcl(index) + src2(index)
END DO

DO index = 1, length
dst(index) = srcl(index) - src2(index)
END DO

DO index = 1, length
dst(index) = srcl(index) * src2(index)
END DO

DO index = 1, length
dst(index) = srcl(index) / src2(index)

END DO
DO index = 1, length : A

sum = sum + src(index) Reduction: convert
END DO array to scalar

B o % Q'i t SC08 Parallel & Cluster Computing: Instruction Level Parallelism
u .\‘:‘_- . . '

nensioey Oklahoma Supercomputing Symposium, October 6 2008 SC; - 28

Slightly Less Simple Loops

DO index = 1, length
dst(index) = srcl(index) ** src2(index) !! srcl ™ src2
END DO

DO index = 1, length
dst(index) = MOD(srcl(index), src2(index))
END DO

DO index = 1, length
dst(index) = SQRT(src(index))
END DO

DO index = 1, length
dst(index) = COS(src(index))
END DO

DO 1ndex = 1, length
dst(index) = EXP(src(index))
END DO

DO index = 1, length
dst(index) = LOG(src(index))
END DO

Ql"'i SCO08 Parallel & Cluster Computing: Instruction Level Parallelism)
$ 50 N | l_lt_i;g?jﬁ.fggg; Oklahoma Supercomputing Symposium, October 6 2008 SC; - 29

g LLoop Performance

Performance Characteristics

= Different operations take different amounts of time.

= Different processor types have different performance
characteristics, but there are some characteristics that many
platforms have in common.

= Different compilers, even on the same hardware, perform
differently.

= On some processors, floating point and integer speeds are
similar, while on others they differ.

l/(O&E;l} ad’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
. t;:;amgs Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

Arithmetic Operation Speeds

Arithmetic Performance on Pentium4 EM64T
(Irwindale 3.2 GHz)

Better 3000

2500

2000 A

1500 A

MFLOPs

1000 ~

500

l' —l

o
x
[

= = = o o o 9o 29

= = = = = = = 2

;ﬁt‘tn
53 2 g3 323 3 88 8 2 ¢

rlog

o
S N N
(1)

radd
iadd
rsum
isum
rsub
isub
rmul
imul
rmam
imam
rmad
imad
rdiv
idiv
rdot

| m ifort -O0 m pgfo0 -O0 m nagf95 -O0 m gfortran -O0 M ifort -O2 M pgfo0 -O3 M gfortran -O2 M nagfo5 -04 \

: - % SCO08 Parallel & Cluster Computing: Instruction Level Parallelism A
J L Rgiaey Oklahoma Supercomputing Symposium, October 6 2008 V=

Fast and Slow Operations

= Fast: sum, add, subtract, multiply

= Medium: divide, mod (i.e., remainder)

= Slow: transcendental functions (sqrt, sin, exp)
= Incredibly slow: power x¥ for real x and y

On most platforms, divide, mod and transcendental functions
are not pipelined, so a code will run faster if most of it is
just adds, subtracts and multiplies.

For example, solving an N x N system of linear equations by
LU decomposition uses on the order of N3 additions and
multiplications, but only on the order of N divisions.

@ e o2/ SCO08 Parallel & Cluster Computing: Instruction Level Parallelism
lt nromemey Oklahoma Supercomputing Symposium, October 6 2008 r‘“? 33

i What Can Prevent Pipelining?

Certain events make it very hard (maybe even impossible) for
compilers to pipeline a loop, such as:

= array elements accessed in random order

= loop body too complicated

= 1T statements inside the loop (on some platforms)
= premature loop exits

= function/subroutine calls

= 1/O

l/&)i_ER} ad’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
_ K t;:;a':mgs Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

How Do They Kill Pipelining?

= Random access order: Ordered array access iIs common, so
pipelining hardware and compilers tend to be designed under
the assumption that most loops will be ordered. Also, the
pipeline will constantly stall because data will come from
main memory, not cache.

= Complicated loop body: The compiler gets too
overwhelmed and can’t figure out how to schedule the

Instructions.

l/OSEEE}\' @ e o4’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
KN IQ Jisianey Oklahoma Supercomputing Symposium, October 6 2008 5;}? 35

How Do They Kill Pipelining?

= 1T statements in the loop: On some platforms (but not all),

the pipelines need to perform exactly the same operations
over and over; 1T statements make that impossible.

However, many CPUs can now perform speculative execution:
both branches of the 1T statement are executed while the

condition is being evaluated, but only one of the results is
retained (the one associated with the condition’s value).

Also, many CPUs can now perform branch prediction to head
down the most likely compute path.

"'§%\=oScER} 'El /jy SC08 Parallel & Cluster Computing: Instruction Level Parallelism
nrorsmion Oklahoma Supercomputing Symposium, October 6 2008 5,;?

How Do They Kill Pipelining?

= Function/subroutine calls interrupt the flow of the
program even more than 1 statements. They can take

execution to a completely different part of the program, and
pipelines aren’t set up to handle that.

= Loop exits are similar. Most compilers can’t pipeline loops
with premature or unpredictable exits.

= |/O: Typically, 1/O is handled in subroutines (above).
Also, 1/O instructions can take control of the program away
from the CPU (they can give control to 1/O devices).

"'g%\\;oScER} % » SC08 Parallel & Cluster Computing: Instruction Level Parallelism
t promaamey Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

What If No Pipelining?
SLOW!

(on most platforms)

£ o SCO08 Parallel & Cluster Computing: Instruction Level Parallelism]
: lt'"mc,r,g" Oklahoma Supercomputing Symposium, October 6 2008 S;E?

Randomly Permuted Loops

Better

MFLOPs

MBI
RCOMPUT/
o &
1
(] i,
= ™
5 %
u &S
g 4
S 2
¥ NOLLY

Arithmetic Performance: Ordered vs Random

(Irwindale 3.2 GHz)
3000
2500
2000 -
1500
1000 -
500 -
07%?355%%3555%%2238*:8%8"538823855&
EEgee2EEFEEERREEFE e BEEEE T

‘ M ifort -O2 M permuted ‘

'l?i t SCO08 Parallel & Cluster Computing: Instruction Level Parallelism
1

ncansoy Oklahoma Supercomputing Symposium, October 6 2008 S;E?

39

g Superpipelining

Superpipelining

Superpipelining is a combination of superscalar and
pipelining.

So, a superpipeline is a collection of multiple pipelines that
can operate simultaneously.

In other words, several different operations can execute
simultaneously, and each of these operations can be broken
Into stages, each of which is filled all the time.

So you can get multiple operations per CPU cycle.

For example, a IBM Power4 can have over 200 different
operations “in flight” at the same time.[]

{ O&ER ; SCO08 Parallel & Cluster Computing: Instruction Level Parallelism
t;:‘ca'::g,ggc Oklahoma Supercomputing Symposium, October 6 2008 f?

More Operations At a Time

= |f you put more operations into the code for a loop, you’ll
get better performance:
= More operations can execute at a time (use more
pipelines), and
= you get better register/cache reuse.

= On most platforms, there’s a limit to how many operations
you can put in a loop to increase performance, but that limit

varies among platforms, and can be quite large.

TECHNO LO GY

l/(O&E;l} ad’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
_ K t'““’"" smey Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

Some Complicated Loops

O index = 1, length madd (or FMA):
dst(index) = srcl(index) + 5.0 * src2(index) mult then add
dot = O

DO index = 1, length dot duct
dot = dot + srcl(index) * src2(index) Ot produc
END DO (2 ops)

DO index = 1, length

dst(index) = srcl(index) * src2(index) + & lromour
& src3(index) * src4(index) example
END DO (3 ops)
DO index = 1, length : :
diff12 = srci(index) - src2(index) Fuclidean distance
diff34 = src3(index) - src4(index) (6 ops)
dst(index) = SQRT(diff12 * diffl2 + diff34 * diff34)

-~ COMPUTT
‘._\\Li N
&

Ql"'i SCO08 Parallel & Cluster Computing: Instruction Level Parallelism)
8 N ' 1*_5;;%@.&31};;5 Oklahoma Supercomputing Symposium, October 6 2008 “;r y 43

A Very Complicated Loop

ot = 0.0
DO index = 1, length
ot = lot + &
& srcl(index) * src2(index) + &
& src3(index) * src4(index) + &
& (srcl(index) + src2(index)) * &
& (src3(index) + src4(index)) * &
& (srcl(index) - src2(index)) * &
& (src3(index) - src4(index)) * &
& (srcl(index) - src3(index) + &
& src2(index) - src4(index)) * &
& (srcl(index) + src3(index) - &
& src2(index) + src4(index)) + &
& (srcl(index) * src3(index)) + &
& (src2(index) * src4(index))
END DO
24 arithmetic ops per iteration
4 memory/cache loads per iteration
Ql"'i SCO08 Parallel & Cluster Com_puting: Inst_ruction Level Parallelism 3
% lit;gggm{ggu Oklahoma Supercomputing Symposium, October 6 2008 SC; - 44

Multiple Ops Per Iteration

& % Ql'i’? SCO08 Parallel & Cluster Computing: Instruction Level Parallelism
" -_\-:3"' '

Arithmetic Performance: Multiple Operations
(Irwindale 3.2 GHz)

3000
2500
2000 -
hafd W ifort -O2
O _
~1 1500 M pgf90 -0O3
LL M nagf95 -0O4
2 W gfortran -O2
1000
500 A
0 .

radd jadd rmam imam rmad imad rdot reuc rlot08 rlotl0 rlotl2 rlotl6 rlot20 rlot24

AR Oklahoma Supercomputing Symposium, October 6 2008 SC; 45

g Vectors

What Is a Vector?

A vector Is a giant register that behaves like a collection of
regular registers, except these registers all simultaneously
perform the same operation on multiple sets of operands,
producing multiple results.

In a sense, vectors are like operation-specific cache.

A vector register is a register that’s actually made up of many
Individual registers.

A vector instruction is an instruction that performs the same
operation simultaneously on all of the individual registers of a
vector register.

l/(O&E;l} ad’ SCO8 Parallel & Cluster Computing: Instruction Level Parallelism
N t;’;‘éﬁﬂg&:‘éﬁ Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

Vector Register

vl V2

v2 = vO + vl

rommon Oklahoma Supercomputing Symposium, October 6 2008 V=1

; % e SCO08 Parallel & Cluster Computing: Instruction Level Parallelism ?
1! _ . 48

Vectors Are Expensive

Vectors were very popular in the 1980s, because they’re very
fast, often faster than pipelines.

In the 1990s, though, they weren’t very popular. Why?

Well, vectors aren’t used by most commercial codes (e.g., MS
Word). So most chip makers don’t bother with vectors.

So, If you wanted vectors, you had to pay a lot of extra money
for them.

However, with the Pentium 111 Intel reintroduced very small
vectors (2 operations at a time), for integer operations only.
The Pentium4 added floating point vector operations, also of
size 2. Now, the Pentium4 EM64T has doubled the vector
Size to 4. -

/(O&ER} as’ SCO08 Parallel & Cluster Computing: Instruction Level Paral .
t nesey - Oklahoma Supercomputing Symposium, October 6 2008

CUEE w

g A Real Example

A Real Examplel]

DO k=2,nz-1
DO j=2,ny-1
DO 1=2,nx-1
teml(i,],k)
tem2(i1,],k)
tem3(1,],Kk)
END DO
END DO
END DO
DO k=2,nz-1
DO j=2,ny-1
DO 1=2,nx-1
u(i,j.k,3) = udi,jy,k,1) - &
& dtbig2*(teml(1,j,k)+tem2(1,j,k)+tem3(i1,j,k))
END DO
END DO
END DO

u(n,j.k,2)*(u(i+l,j.k,2)-u(i-1,j,k,2))*dxinv2
v(i,j.k,2)*(u(i,j+1,k,2)-u(i,j-1,k,2))*dyinv2
w(i,j,K,2)*u(i,j,k+1,2)-u(i,j.k-1,2))*dzinv2

Ql"'i SCO08 Parallel & Cluster Computing: Instruction Level Parallelism)
_ ' l_lt&;_f;gﬁ;g,ggg Oklahoma Supercomputing Symposium, October 6 2008 SC; { 51

Real Example Performance

Performance By Method

MFLOPS

10 loops 5 loops 1 loop 2loops 2loops unrolled
Method

M Pentium3 NAG M Pentium3 Vast

Ql"'i SCO08 Parallel & Cluster Computing: Instruction Level Parallelism)
$ 50 N | 1*_5;;%@.&31};;5 Oklahoma Supercomputing Symposium, October 6 2008 “;r "~ 52

DON"T
PANIC!

£ Ql"'i SCO08 Parallel & Cluster Computing: Instruction Level Parallelism)
N | 'l_lt_{;;gg;g,ggg Oklahoma Supercomputing Symposium, October 6 2008 72 53

j Why You Shouldn’t Panic

In general, the compiler and the CPU will do most of the heavy
lifting for instruction-level parallelism.

BUT:

You need to be aware of ILP, because
how your code Is structured affects
how much ILP the compiler and the
CPU can give you.

SCO08 Parallel & Cluster Computing: Instruction Level Parallelism]
. 'I L isoneney - Oklahoma Supercomputing Symposium, October 6 2008 S;E? 54

To Learn More Supercomputing

http://www.oscer.ou.edu/education.php

X SCO08 Parallel & Cluster Computing: Instruction Level Parallelism __
3 G | l_lt_{;_f;gﬁ;g,ﬂ;gg Oklahoma Supercomputing Symposium, October 6 2008 SC; ~ 55

http://www.oscer.ou.edu/education.php

Thanks for your

g attention!

Questions?

References

[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide, IBM, 2001.
[2] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Order Number: 248966-015

May 2007
http://www. intel .com/design/processor/manuals/248966.pdf

[3] Kevin Dowd and Charles Severance, High Performance Computing,
2" ed. O’Reilly, 1998.

[4] Code courtesy of Dan Weber, 2001.

o SCO8 Parallel & Cluster Computing: Instruction Level Parallelism __
A - 'l_it&;;%;@g; Oklahoma Supercomputing Symposium, October 6 2008 ;?

S7

http://www.intel.com/design/processor/manuals/248966.pdf

	Parallel Programming & Cluster Computing�Instruction Level Parallelism
	Outline
	Parallelism
	What Is ILP?
	Why You Shouldn’t Panic
	Kinds of ILP
	What’s an Instruction?
	What’s a Cycle?
	What’s the Relevance of Cycles?
	Scalar Operation
	Scalar Operation
	Does Order Matter?
	Superscalar Operation
	Loops
	Loops Are Good
	Why Loops Are Good
	Superscalar Loops
	Superscalar Loops
	Example: IBM POWER4
	Pipelining
	Pipelining
	Pipelining Example
	Pipelines: Example
	Some Simple Loops
	Slightly Less Simple Loops
	Loop Performance
	Performance Characteristics
	Arithmetic Operation Speeds
	Fast and Slow Operations
	What Can Prevent Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	What If No Pipelining?
	Randomly Permuted Loops
	Superpipelining
	Superpipelining
	More Operations At a Time
	Some Complicated Loops
	A Very Complicated Loop
	Multiple Ops Per Iteration
	Vectors
	What Is a Vector?
	Vector Register
	Vectors Are Expensive
	A Real Example
	A Real Example[4]
	Real Example Performance
	Why You Shouldn’t Panic
	To Learn More Supercomputing
	Thanks for your attention!��Questions?
	References

